↑他グループへはアイコンをクリック
積層材料グループ
Additive Manufacturing Group
メンバー
渡邊 誠 WATANABE Makoto
構造材料研究センター 副センター長
何 東風 HE Dongfeng
構造材料研究センター 材料創製分野
積層材料グループ 主幹研究員
磁気センサ,非破壊検査,サーモグラフィー,渦電流,電磁,鉄筋腐食,積層材料欠陥
北嶋 具教 KITASHIMA Tomonori
構造材料研究センター 材料創製分野
積層材料グループ 主幹研究員
マーサー クリストファー MERCER Christopher
構造材料研究センター 材料創製分野
積層材料グループ 主幹研究員
Low Thermal Expansion, Auxetics, Lattices, Additive Manufacturing, Geometry Optimization
本田 博史 HONDA Hiroshi
構造材料研究センター 材料創製分野
積層材料グループ 主任研究員
積層造形,レーザー,粉末,吸収率
草野 正大 KUSANO Masahiro
構造材料研究センター 材料創製分野
積層材料グループ 主任研究員
ブリフォ ファビャン BRIFFOD Fabien
構造材料研究センター 材料創製分野
積層材料グループ 研究員
Crystal Plasticity, Finite Element Method, Continuum Mechanics, Fatigue and Fracture, Digital Image Correlation
研究概要
積層材料グループでは、次世代のプロセス技術として注目される三次元積層造形 (3Dプリンタ) や、部材の保護技術として重要な溶射コーティングについて、研究開発を行なっています。ジェットエンジンやガスタービンなど高温エネルギー機器で利用される耐熱材料 (Ni基合金やTi合金、酸化物セラミックス等) を対象としています。
共同研究募集中 !
3D造形プロセスや溶射に関する共同研究を募集しています。
【お問い合わせ先】
渡邊 誠(わたなべ まこと)
WATANABE.Makoto=nims.go.jp([ = ] を [ @ ] にしてください)
原料粉末から複雑な三次元構造を直接作成可能な3D積層造形プロセスについて、プロセス条件と材料組織、特性の相関について、実験および計算による予測の両面から研究を進めています。Ni基合金 (ハステロイX、Inconel 738LC等) や、Ti合金(Ti-6Al-4V、Ti-Nb)、耐熱鋼 (改良9Cr-1Mo鋼) 、ステンレス等、様々な構造材料を対象として、3D造形ならではの組織制御技術の確立や力学特性の最適化に取り組んでいます。さらに、これらの知見に基づいて、3D造形に適した新しい材料開発にも挑戦しています。この他にも、過酷な環境から部材を保護するための溶射コーティングや、信頼性確保のための非破壊評価技術についても研究しています。
代表的な研究論文
Dennis Edgard Jodi, Tomonori Kitashima, Alok Singh, Makoto Watanabe.
High-temperature microstructural stability of pure Ni fabricated by laser powder bed fusion using Gaussian and flat-top beam profiles.
Materials Characterization. 200 (2023) 112897 10.1016/j.matchar.2023.112897
Phuangphaga Daram, Takanobu Hiroto, Makoto Watanabe.
Microstructure and phase evolution of functionally graded multi-materials of Ni–Ti alloy fabricated by laser powder bed fusion process.
Journal of Materials Research and Technology. 23 (2023) 5559-5572 10.1016/j.jmrt.2023.02.151
Plot of the composition profile across the L-PBF deposited FGMs Ni-Ti alloys.
Jun Katagiri, Masahiro Kusano, Satoshi Minamoto, Houichi Kitano, Koyo Daimaru, Masakazu Tsujii, Makoto Watanabe.
Melt Pool Shape Evaluation by Single-Track Experiments and Finite-Element Thermal Analysis: Balling and Lack of Fusion Criteria for Generating Process Window of Inconel738LC.
Materials. 16 [4] (2023) 1729 10.3390/ma16041729
The process window of Inconel738LC using the criteria D/W > 2.0, L/D > 7.69, and Dov/t < 0.1.
Dennis Edgard Jodi, Tomonori Kitashima, Yuichiro Koizumi, Takayoshi Nakano, Makoto Watanabe.
Manufacturing single crystals of pure nickel via selective laser melting with a flat-top laser beam.
Additive Manufacturing Letters. 3 (2022) 100066 10.1016/j.addlet.2022.100066
IPF maps and textures at different locations in the flat-top-manufactured FT1. The IPFs were set along the BD axis
Masahiro Kusano, Makoto Watanabe.
Microstructure control of Hastelloy X by geometry-induced elevation of sample temperature during a laser powder bed fusion process.
Materials & Design. 222 (2022) 111016 10.1016/j.matdes.2022.111016
Sukeharu Nomoto, Masahiro Kusano, Houichi Kitano, Makoto Watanabe.
Multi-Phase Field Method for Solidification Microstructure Evolution for a Ni-Based Alloy in Wire Arc Additive Manufacturing.
Metals. 12 [10] (2022) 1720 10.3390/met12101720
Al molar fraction distributions with phase distributions in the (a) first, (b) fifth, and (c) tenth layers at 1.4 s, 0.36 s, and 0.42 s, respectively.
Kaita Ito, Masahiro Kusano, Masahiko Demura, Makoto Watanabe.
Detection and location of microdefects during selective laser melting by wireless acoustic emission measurement.
Additive Manufacturing. 40 (2021) 101915 10.1016/j.addma.2021.101915
(a) X-ray CT image after single-track test S4 and AE continuous waveform corresponding to the laser scanning speed
Masahiro Kusano, Shiho Miyazaki, Makoto Watanabe, Satoshi Kishimoto, Dmitry S. Bulgarevich, Yoshinori Ono, Atsushi Yumoto.
Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification.
Materials Science and Engineering: A. 787 (2020) 139549 10.1016/j.msea.2020.139549
Comparison of predicted and experimental values for (a) σYS, (b) σUTS,(c) E, and (d) ε. The broken lines indicate ±5% errors.